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There are two profoundly different (though not exclusive)
approaches " uncertain inference. According to one, uncertain inference
leads from one distribution of (non-extreme) uncertainties among a set of
propositions to another distribution of (non-extreme) uncertainties among
those propositions. According to the other, uncertain inference is like
deductive inference in that the conclusion is detached from the premises
(the evidence) and accepted as "practically certain;" it differs in being
non-monotonic: an augmentation of the premises can lead to the
withdrawal of conclusions already accepted.

We show here, first, that probabilistic reasoning and probabilistic
inference are distinct; second,that probabilistic inference is what both
t.rmdit.onmi indJ ctive )ogic ("ampliative inference") an n-mr. to'iIC
reasoning are designed to capture, third, that acceptance is legitimate and
desirable, fourth, that statistical testing provides a model of
probabilistic acceptance, and fifth, that a generalization of this model ' AC For
makes sense in Al.
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i. Probabilisitic Inference and Probabilistic Reasoning

Uncertainty enters into human reasoning and inference in
at least two ways. It is reasonable to suppose that there will be
roles for these distinct uses of uncertainty also in automated
reasoning.

One role for uncertainty concerns choices among
alternative actions. For good reasons, a conception of
uncertainty that did not satisfy the probability axioms, but that
was used for computing expected utilities, would lead the agent
into decisions under which the agent would come out on the
short end in every eventuality. (The Dutch Book Theorem,
Ransey, 1950.) Uncertainty, construed in this way, is what we
need for computing the expectations that are fed into decision
rules, the most common and persuasive of which is the rule to
maximize expected utility. (This rule may not always be
applicable. )

Uncertainty need not be represented by a single classical
probability function; if uncertainties are represented in some
more general fashion, what the Dutch Book argument shows is
that there should exist some classical probability function that is
compatible with that more general representation. It has been
argued (Levi, 1980; Kyburg, 1987) that the most general form of
representation for these uncertainties is that of a set of classical
probability functions, having a convex hull, defined over an
algebra of propositions. Such a representation includes as special
cases belief functions (Shafer, 1976) and most interval
representations of uncertainty. Less general forms of convexity,
for example, in which a set of parameterized probability
functions is taken to be convex over values of the parameter, are
also of interest. (A well-known example concerns "exchangeable"
random quantities, which may generally be regarded as mixtures
of inden1 random quantities. The analysis of these
distributions provides the ilntuitive justification for the use of
subjective probabilities.) Manipulating probability and utility
representations, seeing which ones are consistent with which, or
which imply which, constitutes one form of probabilistic
reasoning. It is this kind of reasoning that Nilsson (1986)
considers to be the appropriate subject matter of probabilistic
logic.
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In addition to merely representing uncertainty and
employing it in decision theory, we are concerned with how
uncertainties are modified or updated in response to evidence.
The classical way of doing this, for classical probabilities, is by
means of Bayes' theorem: if E becomes known, is accepted as
evidence, then the new or updated probability P' of any
statement H in our algebra becomes the old likelihood of E
multiplied by the ratio of the old probability of H to the old
probability of E:

P'(H) = P(EIH) (P (H)/P (E))

This is called confirmational conditionalization. A more
general procedure is Jeffrey Conditionalization (Jeffrey, 1965),
which applies when we undergo some experience or make some
observation whose import is exactly to lead us to shift some
probability from P (E) to P' (E). Then the new probability of
every other statement becomes:

P'(H) = IAHIE)*P'E) + P(HVE)(1 - P'(E))

Confirmational conditionalization can be extended to the
more general approach that represents uncertainty by convex
sets of classical probabilities: it can be shown that if each
classical probability function in a convex set of probability
functions is updated by conditionalizing on the evidence E, the
result will be a new convex set of classical probability functions,
provided Edoes not have zero probability on all the original
probability functions (Kyburg, 1987).

There are other ways in which one might want to update
probabilities than by conditionalization -- certain forms of direct
inference, in which probabilities are derived from knowledge of
statistics or chances, have been shown to conflict with
conditionalization, for example (Levi, 1980). But while any of
these procedures have a perfect right to be called 'probabilistic
reasoning,' they are not what I mean by probabilistic inference.

In inference, in general, one begins with certain
statements or propositions (representations of states of affairs),

m i, and goes through a process that leads to another
statement, the conclusion. From "Tosses of this coin are
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independent and heads occur half the time," we infer, not
probabilistically, but dductiveIy, that if we know that heads has
occurred on the first toss of a pair, then the probability that
heads also occurred on the second toss of the pair is a half. We
infer, not probabilistically, but dduive1, that triples of tosses
consisting of three heads occur an eighth of the time. We infer,
not probabilistically, but dduivL, that if our sample of n
from P is random with respect to R, then the probability is at
least 0. 91 that the proportion of P that are R lies within
3/(4 n) I/2 of the observed sample population.

In ordinary deductive logic, the process of inference is
such as to preserve truth: if the premises are true, so is the
conclusion. Note that the probabilistic reasoning mentioned above
fits into this deductive pattern.

In most applications of deductive inference, we do not
know that the premises are true: they may be warranted,
firmly believed, accepted as practically certain. Sometimes the
premises are merely accepted hypothetically, or for the purposes
of argument.

Often valid deductive inference provides warrant for
accepting its conclusion. But not always: confronted with the
validity of the inference: "All swans are white; Sam is a black
Australian swan; Therefore Sam is white," we opt for the
rejection of the universal premise rather than for the
(inconsistent) inclusion of the consequence.

Spelling out the conditions under which valid deductive
inference provides warrant for its conclusions is not trivial. It is
not trivial because it depends on spelling out the justification for
the premises of a deductive argument. This much is quite clear.

2. Ampliative Inference.
What is controversial is whether or not there is any form

of inference other than deductive inference. Is there any way of
arguing from premises to conclusion that is = (necessarily)
truth preserving, and if there is, why would one want to do it
anyway? Of course there is a tradition in philosophy that
considers "inductive inference, " "ampliative inference," and the
like (Kneale and Kneale, 1962).

David Israel (1986) suggests that there is no other L~gi.g,
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but that real inference proceeds in non-deductive ways. This is
just what the philosophical tradition of inductive or ampliative
inference, or the more recent philosophical concern with scientific
inference has been concerned with. Whether or not there is a
"logic" of such inference is indeed controversial. In either event,
it is something worth looking for; if it doesn't exist, the search
for it will nevertheless prove enlightening.

In artificial intelligence, this search is to be found in the
search for representations of non-monotonic reasoning (such as
circumscription), non-monotonic logics, default logics, and the
like. We want to be able to infer that Tweety can fly. Since
the kinds of inference under investigation do not preserve truth,
we have to be able to back up: if we enlarge the premiss set, we
my have to shrink the conclusion set. Non-monotonic inference
is not generally taken to be probabilistic, but work on
non-monotonic logic suggests that there is interest in inference
rules -- that is, rules that lead from premises to the acceptance
of a conclusion -- that need not be truth preserving. Many
people want to be able to detach conclusions from their premises.
Not all approaches to non-monotonic logic allow full detachment;
de Kleer's ATMS (de Kleer, 1986), for example, requires that tags
reflecting the assumptions used in carrying out an inference be
carried along with the conclusions.

3. Why Accept?
Despite the fact that some people are interested in

non-deductive inference, we may still sensibly ask why they
should be: Why should we accept any statements that are not
(say) mathematical or logical truths? It might be thought that
we couldn't use conditionalization for updating without
acceptance: after all, when we update on evidence E, we take
the probability of E to be one. And once a statement has a
probability of I (or of 0) that probability can never be changed
by conditionalization. But there are other ways to handle
updating: Jeffrey's rule, for example, or various net-propagation
procedures, such as Pearl's (Pearl, 1986).

In principle, there is no reason that human or machine
knowledge in a certain domain should not be represented by a
complete algebra of statements and a classical probability
distribution (or a set of classical probability distributions) over
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them, in which no empirical statement ever receives a
probability of 0 or 1. Such a system would have no need for a
probabilistic rule of inference.

While such a system would be conceptually simple, it
would not reflect the way in which people function
epistemologically. I find myself willing to assert categorically a
large number of propositions that could conceivably be false.
Perhaps more to the point, The progress of science depends on
the categorical acceptance of such statements as: measurement
m is not in error by more than so and so much. The efforts of
engineers in designing a tool or a product depend on their ability
to take as givn such possibly erroneous statements as those
concerning strength of materials, conductivity, .. . Such
statements we take as premises in deductive arguments, whose
conclusions we therefore also accept. I am willing to take such
statements as Cyidenc -- e.g., I take as evidence the statement
that about 50% of tosses result in heads; it is relative to this
evidence that I assign a probability of heads on the next toss of
about .5.

Our empirical scientific knowledge is expressed, not in
probabilities (for the most part) but in categorical statements.
There is a sense in which we may want to say that our science
is uncertain; but there is no obvious probability we associate with
the principle that the vector sum of the forces acting on a static
body must be zero. We do not take measurement to result in
statements such as "with probability 0. 9, the reading 4. 30 was
obtained," (for we regard that as a matter of record, and
therefore of probabilitiy 1) nor do we report the result of the
measurement as an unbounded normal probability distribution:
the mean of the normal distribution of observations of the
quantity measured is (estimated to be) 4. 30. We report (with
confidence .99) that the value is 4.30 ± .02. We use this
interval for the next step in our reasoning or design or decision
process.

As a matter of practicality, no one, I suspect, has ever
tried to represent a significant piece of knowledge or expertise in
the form of a distribution ofer a complete field of sentences. It
would be perverse. The universe of all possibilities is just too
large to handle this way. We must cut it down to size by
ignoring some possibilities, or we will use all our resources doing
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probability cojputations rather than solving our real problem.
When we measure a rod by a method M whose distribution of
error is normal with a mean of zero and a standard deviation
of.01, we don't worry about the finite probability that the
reading is off by more than .05. As for the distribution of error
itself, we don't even keep the data: the hypothesis was confirmed
well enough. Maybe the mean is really 10-6 rather than 0.
Maybe the standard deviation isn't exactly .01. But the
probability of a significant difference is too small to bother about.
This is probabilistic inference in action.

4. Models of Probabilistic Inference.
In testing a statistical hypothesis, the standard goal is to

devise a rule that will erroneously reject that hypothesis no more
than a of the time. Such a test will lead you to a false
rejection no more frequently than a (Lehman, 1959). Of course
a is a free parameter; but we choose a to be small enough that
the possibility of making this sort of error in a given context does
not worry us. The size a we choose reflects how seriously we
take the mistake in question. If it is very serious, we want to
be very sure (but we can't ask for a guarantee) that it won't
happen.

It is very bad form to say of a hypothesis that has been
rejected at the level that the probability is at most a that it was
falsely rejected. But as Birnbaum has pointed out (Birnbaum,
1969), while we can learn not to say such things, it is hard to
know what else to think.

Consider the simplest and most elegant of all forms of
statistical inference: you have a normally distributed quantity X
but you don't know the parameters of its distribution.
Nevertheless, since you iknow that it is normally distributed, you
know the distribution of the quantity t = N 1/2 ( x- ) (s 1 ),
where x and s are the sample mean and standard deviation, and
p is the unknown population mean. Knowing the distribution of z

you can therefore compute the probability, for example, that

If you pick some probability level that makes you feel comfortable



7

under the circumstances, and you are indifferent between over
and underestimating p, then you will have an exact interval
estimate of the unknown mean p, indexed by f: a level of

fiducial probability or practical certainty.
Note that this inference is non-monotonic: on observing a

further sample from the population it may well be that some
different interval for V will be acceptable at the index f

Or consider the most common form of confidence interval
inference: you have a binomial population with an unknown
parameter r, you draw a sample from the population, and
observe a relative frequency f, you construct a class of intervals
(p,,pu) such that whatever the true value of r may be, the

probability is at least p that the sample frequency will fall in the
corresponding interval. But it will have done this if and only if
rlies between a certain maximum and a certain minimum
value. These values determine what is called a confidence
interal, and in particular, a 100p % confidence interval, since
its limits require the specification of an acceptable p.

Outside of statistics, consider Levi (1967). Levi is
concerned with the circumstances under which one ought to add
a hypothesis to one's corpus of knowledge. The famous Rule A
for doing so involves, in addition to the probability of the
hypothesis, a measure of the epistemic content of the hypothesis,
and a further parameter q, which varies from 0 to 1 and
functions as an index of caution.

In artificial intelligence Matthew Ginsberg (1985) applies a
technique much like that of binomial confidence interval inference
(the main difference being that he uses a rougher approximation)
to the problem of inferring an interval characterizing the
reliability of a default rule in non-monotonic logic. In order to
do this, he finds it necessary to introduce a parameter ,
analogous to the fiducial parameter f which he calls
"gullibility.

Finally, in my own work (1961, 1974) I have adopted a
"purely probabilistic" rule of acceptance. That is, a body of
knowledge is indexed by a "level of acceptance"; statements whose
probabilities (relative to a body of knowledge of even higher rank)
are greater than this level of acceptance may be accepted.
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5. Probabilistic Acceptance.
The simplest and most natural idea for acceptance in Al is

just to accept those statements whose probability exceeds a
certain critical number. This number may have to be changed
to reflect different circumstances -- it will be context dependent
-- but so, we may suppose, are a, g, q, p, and f context

dependent.
In what way is acceptance level context dependent? One

natural answer is that acceptance level depends on what is, or
might be expected to be, at stake. If the range of stakes we are
contemplating is limited -- for example, it can't be more than
10 to 1 -- then probabilities greater than .9 are behaviorally
indistinguishable from probabilities of 1, and probabilities of less
than .1 are indistinguishable from probabilities of 0.

It also follows from these considerations that probabilities
larger than the level of acceptance, or smaller than 1 - the level
of acceptance, are just not significant as probabilities. That is, it
makes no sense to bet at odds of 1000: 1 on a statement that gets
its probability from a statistical statement whose acceptance level
is only .99. If you're only 99% sure that the coin lands heads
between .48 and .52 of the time, you should not be willing to
bet at odds of a thousand to one than in 12 tosses you won't get
12 heads. The constraint cuts both ways.

Most of the acceptance rules mentioned above run afoul of
the lottery paradox (Kyburg, 1961). That is, each of a set of
statements S. (e.g., "ticket iwill not win the lottery") may be

probable enough to be accepted, and at the same time may
jointly contradict other accepted statements (e.g., "there will be
a winner"). The only exception is the acceptance principle
advocated by Levi, which links acceptance to expected epistemic
utility; only statements demonstrably consistent with what you
have already accepted are candIdate for future acceptance.

How serious the lottery paradox is depends on what other
machinery you have. It is not deadly if you limit yourself to
a probabilistic rule of acceptance. It will follow that any logical
consequence of a single statement in your corpus of knowledge
should also be in it; but it will = follow that every consequence
of the &a of sentences in your corpus will also be in it. The
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latter would indeed lead to a hopeless sort of inconsistency; the
former should not. If the size of the lottery is adjusted to my
level of acceptance, I will answer your question about whether
ticket i'will win with a categorical "no." But I will answer your
question about whether it is true that neither ticket inor ticket ,
+ Jwill win by saying, "I don't know; but the probability is thus
and so.

This seems not unreasonable. Look at the matter another
way: given a (deductive) argument from premises P1 , " P2 to

a conclusion C, consider whether the argument obligates you to
accept C It seems natural to say that more is required than
merely that each of the premises be accepted; I must also be
willing to accept the conjunction of the premises.

Even this feature might be advantageous in A I. There is
surely an epistemic difference between a conclusion reached in
one step from a single premise, and a conclusion that requires a
number of steps and premises. This difference disappears if the
acceptability of the single premise of the first agument is no
greater than that of the con junction of all the premises in the
second argument. A purely probabilistic rule of acceptance
automatically reflects this fact.

5. Conclusion,

It is important to distinguish probabilistic reasoning from
probabilistic inference. Probabilistic reasoning may concern the
manipulation of probabilities in the context of decision theory, or
it may involve the updating of probabilities in the light of new
evidence via Bayes' theorem or some other procedure. Both of
these operations are essentially deductive in character.

Contrasted with these procedures of manipulating or
computing with probabilities, is the use of probabilistic rules of
inference: rules that lead from one sentence (or a set of
sentences) to another sentence, but do so in a way that need not
be truth preserving. One could attempt to get along without
probabilistic inference, but it would be very difficult.

Instances of such rules are those represented by
circumscription, non-monotonic logic, default rules, etc. as well
as several classes of inference rules associated with statistics, and
some rules discussed by philosophers.
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The simplest probabilistic rule of inference -- a high
probability rule -- has some curious consequences, but it does
not seem that these consequences need interfere with the useful
application of the rule.
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